首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   4篇
测绘学   12篇
大气科学   7篇
地球物理   22篇
地质学   31篇
海洋学   19篇
天文学   1篇
自然地理   8篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   7篇
  2011年   7篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1979年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1954年   1篇
  1951年   1篇
  1950年   4篇
  1948年   1篇
排序方式: 共有100条查询结果,搜索用时 54 毫秒
61.
Earth’s climate sensitivity to radiative forcing induced by a doubling of the atmospheric CO2 is determined by feedback mechanisms, including changes in atmospheric water vapor, clouds and surface albedo, that act to either amplify or dampen the response. The climate system is frequently interpreted in terms of a simple energy balance model, in which it is assumed that individual feedback mechanisms are additive and act independently. Here we test these assumptions by systematically controlling, or locking, the radiative feedbacks in a state-of-the-art climate model. The method is shown to yield a near-perfect decomposition of change into partial temperature contributions pertaining to forcing and each of the feedbacks. In the studied model water vapor feedback stands for about half the temperature change, CO2-forcing about one third, while cloud and surface albedo feedback contributions are relatively small. We find a close correspondence between forcing, feedback and partial surface temperature response for the water vapor and surface albedo feedbacks, while the cloud feedback is inefficient in inducing surface temperature change. Analysis suggests that cloud-induced warming in the upper tropical troposphere, consistent with rising convective cloud anvils in a warming climate enhances the negative lapse-rate feedback, thereby offsetting some of the warming that would otherwise be attributable to this positive cloud feedback. By subsequently combining feedback mechanisms we find a positive synergy acting between the water vapor feedback and the cloud feedback; that is, the combined cloud and water vapor feedback is greater than the sum of its parts. Negative synergies surround the surface albedo feedback, as associated cloud and water vapor changes dampen the anticipated climate change induced by retreating snow and ice. Our results highlight the importance of treating the coupling between clouds, water vapor and temperature in a deepening troposphere.  相似文献   
62.
The Nordic countries, including Greenland, have a long tradition in mining. Documented mining dates back to the 8th century AD. Today this region is the most important metallic mining district of the European Union. Metals are produced from active mines in all countries except Iceland and related industries are thriving in all countries.
Important ore deposit types include: volcanogenic massive sulphide deposits (Cu, Zn, Pb, Au, Ag), orogenic gold deposits (Au), layered intrusions (Ni, PGE, Ti±V), intrusive hosted Cu-Au, apatite-Fe deposits, Cr- and anorthosite hosted Ti deposits. Besides these well- documented deposits, new kinds of deposits are being explored, e.g., iron oxide-copper-gold (IOCG), shale-hosted Ni-Zn-Cu and different types of uranium deposits.  相似文献   
63.
64.
65.
66.
This study focuses on the retrograde rheological and chemical evolution of quartz and the behaviour of quartzites during retrograde metamorphism following dry high grade metamorphism at 750°C, 7 kbar. SEM-CL and LA-HR-ICP-MS are applied to document quartz texture and chemistry, respectively. Four generations of quartz were distinguished by SEM-CL; Qz1, Qz2, Qz3 and Qz4. Qz1, brecciated and partly dissolved old grains, is enriched in B, Al and Ti when compared with the other types. Qz2, formed during brecciation and partial dissolution of Qz1, has low Al contents (<50 ppm) but, due to rutile inclusions, variable Ti contents when occurring in amphibolite (210–10 ppm) but more consistent values when occurring in quartzites (peak value 32 ppm). Qz3, dark grey luminescent quartz forming fluid migration channels (fluid pathways), has Ti < 5 ppm and Al contents below 10 ppm and B < 1 ppm. Qz4, comprises are group of quartz later than Qz3 filling micron thick cracks and pods with very low luminescent quartz, i.e. darker than Qz3. The textural and chemical evolution of quartz in our study is explained by two major influxes of aqueous fluids during regional uplift and retrogression. They facilitated rehydration and recrystallisation in the otherwise dry high grade quartzites. The first introduction of aqueous fluids was associated with brecciation of the high grade quartz (Qz1) and dissolution/precipitation of quartz (Qz2). Ti in quartz geothermometry (Wark and Watson, Contrib Mineral Petrol 152(6):637–652) gives 626°C in agreement with the retrograde PT-path deduced from phase diagrams. Later fluid influx associated with scapolitisation of amphibolite caused localised recrystallisation (Qz3) and alteration of biotite to muscovite along mm-wide fluid migration channels. During subsequent deformation, Qz3 deformed plastically and recovered by subgrain rotation recrystallisation (SGR), resulting in a reduction of grain size, whereas Qz1 quartz formed micro faults. Qz2 was plastic but did not experience SGR to the same degree as Qz3 quartz. Increased plasticity and recovery rates most likely relate to an increased H2O fugacity and the depletion in trace elements of the quartz lattice by promoting strain softening processes dislocation climb and recovery. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
67.
Stress changes within and around a depleting petroleum reservoir can lead to reservoir compaction and surface subsidence, affect drilling and productivity of oil wells, and influence seismic waves used for monitoring of reservoir performance. Currently modeling efforts are split into more or less coupled geomechanical (normally linearly elastic), fluid flow, and geophysical simulations. There is evidence (from e.g. induced seismicity) that faults may be triggered or generated as a result of reservoir depletion. The numerical technique that most adequately incorporates fracture formation is the DEM (Discrete Element Method). This paper demonstrates the feasibility of the DEM (here PFC; Particle Flow Code) to handle this problem. Using an element size of 20 m, 2-D and 3-D simulations have been performed of stress and strain evolution within and around a depleting reservoir. Within limits of elasticity, the simulations largely reproduce analytical predictions; the accuracy is however limited by the element size. When the elastic limit is exceeded, faulting is predicted, particularly near the edge of the reservoir. Simulations have also been performed to study the activation of a pre-existing fault near a depleting reservoir.  相似文献   
68.
69.
70.
The heat flow content in vitrinite reflectance (VR) observations is studied based on a simple model of burial at a constant rate. The model is made dimensionless, and it has just one parameter except for the paleo heat flow. The question of existence and uniqueness of a solution is studied, and there exist in general no paleo heat flow that will reproduce a given VR-depth curve. But a solution is unique if it exists. A computed VR-depth function is shown to be smooth, even for piecewise constant heat flow histories. The paleo heat flow can be obtained from a VR-depth function after two times with derivations. It is also shown how the present day thermal gradient can be obtained by derivation of a VR-depth representation. The one-parameter model allows for approximate expressions for the optimal paleo heat flow as a step function. The results obtained from the one-parameter model is also compared with similar results from a real case study from the North Sea using a state-of-the-art basin simulator.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号